Una magnitud física es una cantidad medible de un sistema
físico a la que se le pueden
asignar distintos valores como
resultado de una medición o una relación de medidas. Las magnitudes físicas se miden usando un patrón que tenga bien definida esa
magnitud, y tomando como unidad la cantidad de esa propiedad que posea el
objeto patrón. Por ejemplo, se considera que el patrón principal de longitud es
el metro en el Sistema Internacional de
Unidades.
Existen magnitudes básicas
y derivadas, que constituyen ejemplos de magnitudes físicas: la masa, la
longitud, el tiempo, la carga eléctrica, la densidad, la temperatura, la
velocidad, la aceleración y la energía. En términos generales, es toda
propiedad de los cuerpos o sistemas que
puede ser medida. De lo dicho se desprende la importancia fundamental del
instrumento de medición en la definición de la magnitud.
Una magnitud extensiva es una magnitud que depende de la cantidad de sustancia que tiene el cuerpo o sistema. Las magnitudes extensivas son aditivas. Si consideramos un sistema físico formado por dos partes o subsistemas, el valor total de una magnitud extensiva resulta ser la suma de sus valores en cada una de las dos partes. Ejemplos: la masa y el volumen de un cuerpo o sistema, la energía de un sistema termodinámico, etc.
Una magnitud intensiva es aquella cuyo valor no depende de la cantidad de materia del sistema. Las magnitudes intensivas tienen el mismo valor para un sistema que para cada una de sus partes consideradas como subsistemas. Ejemplos: la densidad, la temperatura y la presión de un sistema termodinámico en equilibrio.
En general, el cociente entre dos magnitudes extensivas da como resultado una magnitud intensiva. Ejemplo: masa dividida por volumen representa densidad.
Las magnitudes escalares son aquellas que quedan completamente definidas por un número y las unidades utilizadas para su medida. Las magnitudes escalares están representadas por el ente matemático más simple, por un número. Podemos decir que poseen un módulo pero carecen de dirección. Su valor puede ser
- Independiente del observador (p. ej.: la masa, la temperatura, la densidad, etc.)
- Depender de la posición (p. ej.: la energía potencial),
- Un estado de movimiento del observador (p. ej.: la energía cinética).
- Longitud: metro (m). El metro es la distancia recorrida por la luz en el vacío en 1/299 792 458 segundos. Este patrón fue establecido en el año 1983.
- Tiempo: segundo (s). El segundo es la duración de 9 192 631 770 períodos de la radiación correspondiente a la transición entre los dos niveles hiperfinos del estado fundamental del cesio-133. Este patrón fue establecido en el año 1967.
- Masa: kilogramo (kg). El kilogramo está definido a base de la constante de Planck, esta equivaliendo a 6.62607015×10−34 kg⋅m²⋅s−1. Este patrón fue establecido en el año 2018, e implementado en el año 2019.3
- Intensidad de corriente eléctrica: amperio (A). El amperio o ampere es la intensidad de una corriente constante que, manteniéndose en dos conductores paralelos, rectilíneos, de longitud infinita, de sección circular despreciable y situados a una distancia de un metro uno de otro, en el vacío, produciría una fuerza igual a 2×10−7 newton por metro de longitud.
- Temperatura: kelvin (K). El kelvin es la fracción 1/273,16 de la temperatura del punto triple del agua.
- Cantidad de sustancia: mol (mol). El mol es la cantidad de sustancia de un sistema que contiene tantas entidades elementales como átomos hay en 12 gramos de carbono-12.
- Intensidad luminosa: candela (cd). La candela es la unidad luminosa, en una dirección dada, de una fuente que emite una radiación monocromática de frecuencia 540×1012 Hz y cuya intensidad energética en dicha dirección es 1/683 vatios por estereorradián.
- Fuerza: newton (N) que es igual a kg·m/s²
- Energía: julio (J) que es igual a kg·m²/s²
Una unidad de medida toma su valor a partir de un patrón o de una composición de otras unidades definidas previamente. Las primeras unidades se conocen como unidades básicas o de base (fundamentales), mientras que las segundas se llaman unidades derivadas.
Un conjunto de unidades de medida en el que ninguna magnitud tenga más de una unidad asociada es denominado sistema de unidades.
Todas las unidades denotan cantidades escalares. En el caso de las magnitudes vectoriales, se interpreta que cada uno de los componentes está expresado en la unidad indicada.
Una vez definidas las magnitudes que se consideran básicas, las demás resultan derivadas y se pueden expresar como combinación de las primeras.
Las unidades derivadas se usan para las siguientes magnitudes: superficie, volumen, velocidad, aceleración, densidad, frecuencia, periodo, fuerza, presión, trabajo, calor, energía, potencia, carga eléctrica, diferencia de potencial, potencial eléctrico, resistencia eléctrica, etc.
Algunas de las unidades usadas para esas magnitudes derivadas son:
- La velocidad es la magnitud física de carácter vectorial que relaciona el cambio de posición (o desplazamiento) con el tiempo. Se representa con: o (en la escritura manuscrita). Su unidad en el Sistema Internacional de Unidades es el metro por segundo (símbolo, m/s).